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ABSTRACT: Label-free quantification (LFQ) of shotgun proteomics data is
a popular and robust method for the characterization of relative protein
abundance between samples. Many analytical pipelines exist for the
automation of this analysis, and some tools exist for the subsequent
representation and inspection of the results of these pipelines. Mass Dynamics
1.0 (MD 1.0) is a web-based analysis environment that can analyze and
visualize LFQ data produced by software such as MaxQuant. Unlike other
tools, MD 1.0 utilizes a cloud-based architecture to enable researchers to store
their data, enabling researchers to not only automatically process and visualize
their LFQ data but also annotate and share their findings with collaborators
and, if chosen, to easily publish results to the community. With a view toward
increased reproducibility and standardization in proteomics data analysis and streamlining collaboration between researchers, MD
1.0 requires minimal parameter choices and automatically generates quality control reports to verify experiment integrity. Here, we
demonstrate that MD 1.0 provides reliable results for protein expression quantification, emulating Perseus on benchmark datasets
over a wide dynamic range. The MD 1.0 platform is available globally via: https://app.massdynamics.com/.

KEYWORDS: MaxQuant, automated data analysis, label-free quantification, benchmarking, web-based software tool

■ INTRODUCTION

Proteomics can be defined as the application of technologies
for identification and quantification of the protein content of
complex biological samples. Over the past few decades,
proteomics research and the complexity of experimental
research questions addressed by it have developed rapidly
and are having a growing impact in biological and medical
research. In particular, areas such as understanding mecha-
nisms of action in disease progression and therapeutic
intervention as well as detection of diagnostic markers,
identifying candidates for vaccine production, and under-
standing pathogenic mechanisms and gene expression patterns
have been of growing importance in advancing many areas of
medically related research.1,2

Mass spectrometry via liquid chromatography (LC)/MS−
MS is the leading technology in proteomics research, with
label-free quantification (LFQ) and isotope-based labeling
methods being two approaches that facilitate interrogation and
measurement of many analytes in even very complex samples.
Isotope-based labeling methods such as SILAC and TMT have
provided the gold standard for protein quantification but are
limited by their applicability to types of samples, which cannot
be easily labeled, and by the associated cost of reagents
required. By contrast, LFQ is a simpler, more economical, and
scalable method that requires a considered experimental design
to achieve robust biological insights.3

An exemplar of the growing use and adoption of LFQ-based
approaches is the sheer variety of analytical software packages
that have been developed to support LFQ experiments, which
have been comprehensively covered recently by Al Shweiki et
al.,4 the most widespread of which is MaxQuant.5 MaxQuant’s
success can be attributed at least in part to the holistic nature
of its analytical tools, covering a breadth of steps including
feature extraction, database search, protein identification, and
quantification, which must otherwise be achieved using a
combination of other tools.
While data processing is essential for the success of

proteomic analysis, objective quality control reporting and
reproducible downstream analysis are equally important. The
Perseus computational platform is the analytical counterpart to
MaxQuant and provides users with a highly flexible framework
for post-processing and visualizing results.6,7 Despite the
diverse suite of tools offered by Perseus (accompanied by
supporting documentation and online tutorials), the sheer
amount and breadth of functionality can be overwhelming for
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users requiring straightforward analysis of LFQ proteomics
data. For some users, who commonly repeat identical analytical
procedures frequently for collaborators, Perseus can be more
labor- and time-intensive than other tools designed to
automate the same process such as LFQAnalyst.8

Since the publication of LFQAnalyst in 2019, there have
been numerous publications of automated LFQ pipelines
including Eatomics9 and ProVision.10 While each of these
resources differs in their scope and degree of automation, they
are among a growing list of attempts to shift toward
standardization through automation of straightforward stat-
istical analyses and visualization provided as an output of the
LFQ pipeline. While these attempts have undoubtedly made
headway toward more accessible and reliable analytical
processes, there remain large challenges such as scale, storage,
sharing, and platform sustainability that will inhibit broad
adoption among the community.
MD 1.0 addresses these needs by meeting multidimensional

criteria in reliability, ease of use, and transparency while
offering functionality designed to facilitate collaboration and
sharing. A qualitative survey of the tools mentioned above, MD
1.0 is provided in Table S1.
There are several measures that can be taken to ensure that

tools facilitating LFQ proteomics maintain reliability of
analysis and interpretability of results. First, data analysis and
statistical approaches should be demonstrated to produce
accurate and reliable results in accordance with the accepted
best practices of statistical testing. Second, by demonstrating
that the specific implementation of these methods has been
successful and continues to be over the life of the tool, this
ensures that the specific code works and is not accidentally
compromised during further development. Third, by incorpo-
rating automated quality control metrics and figures, these
provide confidence that results in non-benchmark datasets that
can be reasonably interpreted. By meeting these three criteria,
any scientific tool can be safely shared with users of varying
degrees of expertise.
However, reliability of results is only one side of the coin

when it comes to developing useful, empowering tools for the
proteomics field. Interviews with 100 scientists in the field of
mass spectrometry11 found that “free” tools often imposed
significant hidden costs in the time spent learning to use the
software and in manual tuning of parameters. Though
opportunity costs of users are hard to quantify, they represent
a genuine cost of use.
It is likely that an awareness of these hidden costs is in part a

large driver for the number of tools created for automating
analysis of LFQ data, although calls for robust, user-friendly
automation in proteomics have been present since 1999.12

Automated tools not only are less time-consuming but also
reduce the number of points of failure that must be
investigated in development, benchmarking, and comparison.
For many practical reasons, automation simplifies tools,
making them more accessible to users and scientific
developers. Moreover, codifying analysis, open-sourcing
analytical workflows, and benchmarking allow for stand-
ardization that addresses reproducibility difficulties that plague
the broader scientific field.
Tools that automate highly complicated tasks inevitably end

up comprising large amounts of code that must be available for
the tool to be reproducible (as a necessary, but not sufficient
condition). Tools such as OpenMS13 achieve reproducibility

by open-sourcing their code, enabling a thorough and ongoing
peer review as tools grow over time.
MD 1.0 attempts to meet these standards of reliability,

automation (thereby ease of use), and transparency in the
specific domain of LFQ analysis. However, MD 1.0 provides
further functionality designed to assist with resource
integration, annotation, sharing, and collaboration.
Traditional and ubiquitous methods for sharing LFQ data

likely include email or messenger service (e.g., Slack)-type
transfers of text and use of file storage tools like Dropbox or
Google Drive. These tools present obstacles to effective
collaboration such as separating data from quality control
metrics, which can obscure interpretability. By allowing an
entire experiment to be shared with ease, MD 1.0 attempts to
make supervision and collaboration easier for scientists to ask
for and receive assistance while performing their experiments.

■ METHODS

Benchmarking Datasets

Different LFQ benchmarking datasets are chosen to verify that
MD 1.0 recovers comparable results to Perseus. These include
two datasets with PRIDE14 identifiers PXD0002793 and
PXD010981,15 which have ground truth and one “real
world” scenario, with PRIDE identifier PXD002057.16

PXD000279 (“dynamic range dataset”) contains raw data for
two groups (four replicates each) enriched with one of two
“Universal Protein Standards” (1 and 2), which test LFQ
accuracy over a large dynamic range.
PXD002057 (“HER2 dataset”) contains raw data for an

experiment with two groups, each with three samples. These
two groups come from two cancer cell lines, a parental SKBR3
cell line and another cell line derived from the first, which is
resistant to human epidermal growth factor receptor 2
(HER2)-targeted therapy.
Last, PXD010981 (“iPRG2015 dataset”) contains raw data

for the iPRG2015 benchmarking dataset. This dataset is
composed of four samples with 200 ng of tryptic digests of
Saccharomyces cerevisiae (ATCC strain 204508/S288c). Each
was spiked with different quantities of six individual digested
proteins (ovalbumin, myoglobin, phosphorylase b, beta-
galactosidase, bovine serum albumin, and carbonic anhydrase)
according to a schema in that publication (present in the
benchmarking github repository “lfq_benchmarking”).
To ensure that certain spiked proteins (P02768 and P06396

for the dynamic range dataset and P44683 for the iPRG2015
dataset) were not removed as contaminants, the proteinG-
roups.txt output was manually edited prior to benchmarking
analysis. The resulting input files are provided in the
Supporting Information.
Raw Data Processing with MaxQuant

MaxQuant v1.6.17.0 was used with default parameters except
for an LFQ min ratio of 1 and enabling match between runs.
Output files used for quality control included msms.txt,
peptides.txt, modificationSpecificPeptides.txt, proteinG-
roups.txt, and evidence.txt, while only proteinGroups.txt was
used for quantification. While MaxQuant labeled spiked
proteins as potential contaminants, proteinGroups.txt was
manually edited to remove this label so these rows would be
present in subsequent processing.
Results and parameters files can be downloaded from the

Supporting Information and from the Mass Dynamics platform
at the following addresses:
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iPRG2015: https://app.massdynamics.com/p/56a6d7f7-
c129-4d7a-a221-d2ef3b8ff4c3
Dynamic Benchmark Range Dataset: https://app.

mas sdynamic s . com/p/152bd07 f -ddd6 -4943 -b f62 -
298648b43bd3
HER2: https://app.massdynamics.com/p/b832f17a-a9f3-

4890-8533-2d69835f814e
Please note that public experiment links provide a limited

feature set due to “read only access”. Downloading input files
from the Supporting Information and uploading as new
experiments will allow access to all features.
Additionally, all MaxQuant and MD 1.0 outputs are

contained within PRIDE repository PXD028038.
MD 1.0 LFQ Processing

Statistical analysis is performed using R version 4.1.0.
An experiment design file is generated from user input

during the experimental setup in the application prior to
processing, which is thereafter automatic. Samples can be
grouped into two or more experimental groups, and all
pairwise statistical comparisons will be generated between
those groups by the following workflow. The samples or
experimental groups uploaded over several submissions will
not be automatically compared.
The following steps are then taken to perform the analysis:

1. Proteins corresponding to reverse sequences, potential
contaminants, and proteins only identified by site are
filtered out.

2. Intensities provided inside proteinGroups.txt are con-
verted to the log2 scale.

3. Missing values are imputed using the MNAR (“missing
not at random”) method with a mean shift of −1.8 and a
standard deviation of 0.3 as recommended in the
Perseus protocol.

4. Protein groups where more than 50% of intensities are
imputed for both conditions are excluded from the
quantitative analysis.

5. Differential expression (DE) analysis is performed using
linear models with the Bioconductor package limma,17

in particular using the limma-trend method.18,19 P-values

are calculated using the robust empirical Bayes
procedure to compute moderated t-statistics.

6. The Benjamini−Hochberg correction is used to account
for multiple testing.

MD 1.0 does not currently take into account covariates or
paired experiment design.
All the codes used to reproduce the abovementioned

workflow using the MaxQuant output are provided in the
LFQProcessing R package, available on GitHub.20 To extend
the use of the workflow to output from software other than
MaxQuant, the analysis steps were also implemented for a
generic format of summarized protein intensities and are
available in the MassExpression R package on GitHub.21

Volcano plots are used to summarize DE results in the Rails
application. Guides are provided in these plots to indicate a
false discovery rate (FDR) cutoff of 5% and an absolute fold
change of at least 2.
Implementation

MD 1.0 is composed of two separate components, a web
component using a modern software stack (JavaScript and
rails) and a processing component built using R and Elastic
Compute Cloud (ec2) on Amazon Web Services (AWS). The
combination of these two components ensures that processing
is repeatable and runs in a computing environment using
identical software, parameters, and code while maintaining the
privacy and security of user data. Users have the option to
share their data with specific users or share publicly.
The R code bases and packages responsible for MaxQuant

and generic format processing are public to enable complete
reproducibility of the Mass Dynamics 1.0 analysis. The AWS
infrastructure, the JavaScript, and Rails components are not
open sources but are only responsible for storing, moving files,
making API calls (to Reactome), and rendering the user
interface.

Perseus Processing. All proteinGroups.txt were analyzed
with Perseus version 1.6.14.0. Proteins corresponding to
reverse sequences, contaminants, and proteins only identified
by site were removed. Intensities were transformed to the log2
scale, and missing values were imputed as in the MD 1.0
protocol. Student t-tests were performed for each pairwise

Figure 1. MD 1.0 landing page. The user interface begins at the experiments page after users sign up and log in. Users can see their experiments,
with associated status (“in progress” or “view” for finished experiments), dates, and owners. Experiments can be the users’ own (such as experiment
2) or shared via a collaborator (experiment 1). Users can see which of their experiments have been shared with other users and who those users are
via the “shared with” link in bold. Experiments are either in progress or completed in which case the view button is accessible. The “create
experiment” button allows users to upload data for a new LFQ analysis.

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.1c00683
J. Proteome Res. 2021, 20, 5180−5188

5182

https://app.massdynamics.com/p/56a6d7f7-c129-4d7a-a221-d2ef3b8ff4c3
https://app.massdynamics.com/p/56a6d7f7-c129-4d7a-a221-d2ef3b8ff4c3
https://app.massdynamics.com/p/152bd07f-ddd6-4943-bf62-298648b43bd3
https://app.massdynamics.com/p/152bd07f-ddd6-4943-bf62-298648b43bd3
https://app.massdynamics.com/p/152bd07f-ddd6-4943-bf62-298648b43bd3
https://app.massdynamics.com/p/b832f17a-a9f3-4890-8533-2d69835f814e
https://app.massdynamics.com/p/b832f17a-a9f3-4890-8533-2d69835f814e
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.1c00683/suppl_file/pr1c00683_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00683?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00683?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00683?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00683?fig=fig1&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.1c00683?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


comparison with an S value of 0 and a Benjamini−Hochberg
FDR correction were used for multiple testing adjustment.
Tests were only performed when more than 50% of values are
not imputed in at least one group. Session files are available in
the Supporting Information.

Figure Generation and Results Comparison

All results figures and tables were calculated using bespoke
python scripts utilizing packages including pandas for data
manipulation, plotly and matplotlib for graphics, and scipy for
Pearson correlation calculations. All the codes used to perform
the comparisons are available on GitHub at https://github.
com/MassDynamics/lfq_benchmark or Zenodo (https://doi.
org/10.5281/zenodo.5516668).

■ RESULTS AND DISCUSSION

Overview of MD+ Discovery, User Interface, Experiment
Creation, and Sharing

Mass Dynamics 1.0 is a web-based, integrated, and automated
analysis and collaboration environment that facilitates LFQ
experiments. MD 1.0 enables users to upload MaxQuant
output files and visualize the quantitative analysis. The user
interface begins at the experiments page after users sign up and
log in (Figure 1).
To create a new experiment, users can click the create

experiment button on the landing page, which takes them to
the experiment creation page. Here, they are given the choice
of uploading a generic format for protein intensity data,
MaxQuant.txt folder outputs, or use of the “demo” HER2
dataset. TMT data can be processed using the same statistical

pipeline with the addition of protein level median normal-
ization for each channel in each sample.22

After uploading their LFQ data, experiment files are
presented to the user, who is prompted to allocate them into
replicate groups. They can then add an experiment description
and complete the experiment creation step. Computation time
depends on the size of the experiment. Users are sent an email
notification when their experiment has been completed.
In an experiment view (Figure 2), users can choose between

the following tabs: analysis, quality control (QC) report,
insights, results files, export, and experiment design. Analysis
contains protein expression volcano plots and tables. The QC
report contains several experimental quality control plots. The
insights tab contains a list of comments and notes introduced
by the user. The results files tab contains a list of output files
that can each be downloaded, which includes the tab separated
files produced by the quantitative analysis scripts. The export
tab enables users to export the volcano plot graph with all
“candidate proteins” (proteins that have been selected and
added to at least one selection list) highlighted and annotated.
Last, the experiment design tab indicates which files have been
assigned to each experimental condition.
As the experiment data is stored securely in the cloud,

sharing is as simple as giving collaborators access to the same
website. After an experiment is completed, users can select the
share button and enter the email address of someone they
would like to share their experiment with. This email address is
then sent an invitation to join MD 1.0, which contains a link to
the shared experiment. Insights associated with proteins, which
are accessible at all protein level analysis interfaces, perpetuate

Figure 2. MD+ Discovery experiment view header (A) and experiment view volcano plot (B). In an experiment view (A), users can choose
between the following tabs: analysis, QC report, insights, results files, export, and experiment design. Users also can share their experiment. Inside
the analysis tab (B), users can choose between tabs for viewing the volcano plots, filtering by protein observations by replicates and the Reactome
ORA tab. The volcano plot and table allow users to dynamically search for, select, and manipulate protein lists by adding, removing, and annotating
proteins as they complete their analysis.
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between users accessing the same experiment and are thus
shared with the experiment data.
Experiments uploaded to the MD 1.0 platform will be stored

for at least 5 years from upload and after that pending further
correspondence. Users can delete experiments on request.

MD 1.0 Facilitates Analysis and Annotation of Label-Free
Quantitation Results

After an experiment has finished processing, the analysis tab
can be used to visualize results in the form of a volcano plot
(Figure 2B). Next to the volcano plot is a table containing a list
of each protein with the associated gene name, estimated fold
change, p-value, and adjusted p-value. From this table, proteins
can be added to the list that can be used to filter results to
proteins of interest or into groups of up- or downregulated
proteins. A protein in a list can be given an annotation, where
the user is able to comment on a protein with text and/or
hyperlinks, which are then presented in the insights tab.

MD 1.0 Allows Users to Perform Over-Representation
Analysis with Reactome

If protein accession codes are contained within input files, then
MD 1.0 will automatically link table views to Uniprot.org,23

and the Reactome ORA (Figure 3) provides further integration
with an external knowledge base. The Reactome ORA tab uses
the Reactome24 API content service to provide over-
representation analysis (ORA) results to users. For each
candidate list, one API call is made to perform ORA, while a
second one is used to retrieve the complete list of proteins in
each resulting pathway.
As no background can be specified using the Reactome API,

the hypergeometric test is performed using the ratio calculated
as the number of entities in the pathway and, in the candidate
list, divided by the total number of associated entities known to
Reactome. The provided FDR is calculated using the
Benjamini−Hochberg method.

MD 1.0 Quality Control Report Produces Diagnostic
Figures to Assess Experiment Health

A feature of MD 1.0 is the automated generation of a quality
control report accessible in the quality control (QC) report
(see the Supporting Information) tab in the experiment view.
The report contains three sections, experiment health,

feature completeness, and identifications. Experiment health
contains principal component analysis scatter plots of the first
two principal components and a scree plot for all proteins,
differentially expressed proteins, modification-specific peptides,
and all peptides. Quantitative CV (coefficient of variation)
distributions and sample intensity correlation plots are then
produced for proteins, peptides, and modification-specific
peptide tables. The feature completeness section provides the
percentage of missing measurements in a histogram at the
protein, peptide, and modification-specific peptide levels and a
histogram of the percentage of all measurements missing at the
LC−MS run (file) level. Last, the identifications section
reports counts per file for detected PSMs, modification-specific
peptides, peptides, and proteins. Complete QC reports are
provided both in application and in the Supporting
Information.
Due to the automatic nature of the QC report and data

processing, users can quickly review and assess experimental
results and confidently interpret results or share with
collaborators via other features.

MD 1.0 Reproduces Perseus Results Reliably on Sample
Datasets

To determine the reliability of the MD 1.0 automated
workflow for LFQ quantification, we analyzed the same
experiments on Perseus and MD 1.0. Two of these
experiments, the iPRG2015, and dynamic range datasets
contained ground truth data where we have expected DE
proteins and fold changes. The last dataset from a study on

Figure 3. The Reactome ORA tab enables users to perform over-representation analysis (ORA) using the Reactome API. A volcano plot is shown
with all proteins in that pathway (in gray) and that experiment and the “candidate proteins” blue and labeled, with a corresponding estimated false
discovery rate (FDR) provided.
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breast cancer resistant cells constitutes a more realistic real-
world scenario with no ground truth.
We compared Perseus and MD 1.0 results on these datasets

using continuous and discrete measures of accuracy (for the
ground truth datasets) and by similarity (for all datasets).
Tables 1 and 2 show the confusion matrices for Perseus and

MD 1.0 DE performance across the dynamic range and

iPRG2015 datasets, respectively. We defined a “true positive” if
the estimated and true protein abundance ratios were both
larger than 2 in the same direction, and an adjusted p-value of
less than 0.05 was produced. “False negatives”, where the true
protein abundance ratio was greater 2 but the estimated value
was not or the adjusted p-value was greater than 0.05, were rare
but occurred once in the dynamic range dataset (in common
between the two experiments) and three times for Perseus in
the iPRG2015 dataset. Tables 1 and 2 provide more details on
these missed detections.
It is noted that, for the iPRG2015 dataset that MD 1.0

produced, 14 false positives as opposed to three were produced
by Perseus. This discrepancy and others described above may
be due to the differences in the randomly imputed values via
the MNAR imputation used in both workflows and possibly
because the MD 1.0 workflow uses the empirical Bayes t-test
from the limma package to perform a modified t-test as
opposed to the standard t-test used by the Perseus protocol. By
sharing information across tests, the empirical Bayes method
can better estimate the underlying variance in observations and

therefore gain greater confidence about differentially expressed
proteins. This may explain why MD 1.0 detected all 30
expected positives in Table 2, while the Perseus protocol only
detected 27.
The Pearson correlation was used to measure the similarity

between estimated log fold changes and the true log fold
changes (according to the benchmark dataset descriptions).
Scatter plots of these values are provided in Figure 4A−D. In
all cases, the Pearson correlation was greater than 0.9,
suggesting very high accuracy.
The Pearson correlations between MD 1.0 and Perseus

estimated log fold changes were 0.998, 1.0, and 0.988 for the
dynamic range dataset, iPRG2015, and HER2 studies,
respectively (Figures 4−6), whereas the associated −log10
adjusted p-values varied slightly more, with Pearson
correlations of 0.925, 0.980, and 0.901 for the dynamic range
dataset, iPRG2015, and HER2 studies, respectively, showing
that MD 1.0 produces results consistent with what can be
achieved by those using the Perseus platform, except with a
completely automated workflow.

■ CONCLUSIONS AND OUTLOOK

Mass Dynamics 1.0 is a web-based, integrated, and automated
analysis and collaboration environment that facilitates label-
free quantitative experiments. It currently accepts the
MaxQuant output and is designed to be adaptable to accept
data from other pre-processing tools. The output of MD 1.0 is
served to the user via web pages, which contain interactive
figures, tables, and downloads. The analysis performed by MD
1.0 is inherently reproducible both in the platform and
elsewhere and can be easily shared or published to the
community.
With the intention of broadening access to a wider range of

users from computational and non-computational back-
grounds, this environment provides many features that
facilitate quality control, reproducibility, automation, and
transparency.
We demonstrated that MD 1.0 reproduces results of the

Perseus protocol reliably and accurately with respect to known
benchmarking datasets while producing comprehensive quality
control reports that allow the user to be confident about the
quality of the experiment. MD 1.0 therefore constitutes a
reliable, straightforward, and streamlined alternative to the
Perseus platform when performing LFQ.
Mass Dynamics is well placed to begin expanding MD 1.0 in

terms of analysis available beyond LFQ. Creating further
interfaces to enable analysis of peptides, modified peptide
statistics may enable users to perform peptide level or PTM
analysis such as for phosphoproteomic analysis. Further
development of the processing may facilitate more complex
experimental designs that, for example, could handle paired
samples.
Enrichment analysis such as over-representation analysis

(ORA) and gene set enrichment analysis (GSEA) might be
achieved via integrations of third party databases such as GO,
DAVID, KEGG, or Drugbank. User interface improvements
may involve more opportunities for annotation and sharing
utilities or allow comparisons between multiple different
experiments contained within the platform.
Last, leveraging the cloud-storage element of MD 1.0

implementation, insights may be gained by cross-referencing
experiment data and insights.

Table 1. Binary Evaluation of Differential Expression
Predictions between Perseus and MD 1.0 on the Dynamic
Range Benchmark Dataset (Cox et al.)a

MD 1.0 Perseus

expected
true

expected
false

expected
true

expected
false

observed true 39 4 39 4
observed false 1 2198 1 2198
sum 40 2202 40 2202
aConfusion matrices for the dynamic range dataset were identical
between MD 1.0 and Perseus. Both methods produced results within
the 1% standard for an acceptable false discovery rate. One false
negative was produced by both Perseus and MD 1.0 pertaining to
gamma-synuclein (UniProt ID: O76070), resulting from higher
adjusted p-values of 0.578975 and 0.351076, respectively.

Table 2. Binary Evaluation of Differential Expression
Predictions between Perseus and MD 1.0 on iPRG2015
Benchmarking Dataset (Choi et al.)a

MD 1.0 Perseus

expected
true

expected
false

expected
true

expected
false

observed true 30 14 27 3
observed false 0 19,528 3 19,539
sum 30 19,542 30 19,542
aConfusion matrices for the iPRG2015 results. Both methods
produced results within the 1% standard for an acceptable false
discovery rate. The Perseus protocol used failed to detect three
protein abundance ratios greater than 2 in all cases due to lower
confidence than required by the definitions used. The comparisons
were phosphorylase b in samples 1 vs 2 (adjusted p-value of 0.058)
and ovalbumin in samples 2 vs 3 and 3 vs 4 (adjusted p-values of
0.0594 and 0.0880, respectively).
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Figure 4. Scatter plots of the true and estimated log fold changes produced by Perseus MD 1.0 for iPRG2015 and the dynamic range datasets. (A)
iPRG2015 Perseus, (B) iPRG2015 MD 1.0, (C) dynamic range dataset MD 1.0, (D) and dynamic range dataset Perseus. Only spiked proteins are
plotted. The Pearson correlation is shown.

Figure 5. Comparison analysis between LFQ results produced by Perseus and MD+ Discovery MD 1.0. using the iPRG2015 and dynamic range
datasets. (A) iPRG2015 fold change estimate comparison. (B) iPRG2015 −log10 adjusted p-value estimate comparison. (C) Dynamic range
dataset fold change estimate comparison. (D) Dynamic range −log10 adjusted p-value estimate comparison.
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