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Volumetric absorptive microsampling devices (VAMS) allow patients to collect blood via 
fingerprick sampling at home. This approach enables collection of frequent longitudinal 
samples that can be used for health surveillance of disease, including cancer, for early 
diagnostics, ongoing monitoring, and recurrence. We have demonstrated that VAMS devices 
aid sample preparation for proteomics, facilitating the depletion of high abundance proteins 
via washing, prior to digestion. Reducing the dynamic range enabled the detection of more 
than 3000 proteins using a mid-throughput mass spectrometry (MS) method running 18 
samples per day (SPD). Using a clinical cohort of non-small cell lung cancer (NSCLC), we 
compared the use of both mid- and high-throughput methods to identify relevant 
biomarkers and differentiate healthy from disease patients. 

Introduction

Results and Discussion

Conclusions

• Although the mid-throughput method gave more IDs overall, on a per-minute of run time basis the high-throughput method produced 1.5-fold more IDs.

• Machine learning algorithms identified several markers including PRTN3, CNDP1, NIT2, MNDA, ICAM3 which have been identified previously in lung cancer and show promise as future 
markers to be included in validation studies. There was one protein common between the two methods, Myeloblastin (PRTN3), a serine protease, which has been linked to KRAS 
mutations in lung cancer patients. 

• The combination of our novel sample preparation methods with both the mid- and high-throughput protocols produced high quality data enabling differential biomarkers to be defined. 

• Study demonstrates the potential use for microsampling in cancer biomarker discovery which has real-world clinical utility, providing a path to at-home sampling and patient centric 
monitoring.
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Methods

Figure 1. Blood from 16 patients with NSCLC and 18 controls 
were loaded onto VAMS devices and dried. VAMS washed with 
LiCl buffer, then remaining proteins in tip extracted with SDC 
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Figure 2. Number of protein IDs for 
samples analysed with a mid-throughput 
method (compared to a high-throughput 
method for (A) total acquisition time, (B) per 
minute of acquisition time, (C) total 
acquisition time stratified by disease group, 
or (D) per minute of acquisition time 
stratified by disease group. Data are mean ± 
SD, data is significantly different (*) if p < 
0.05. 

With the use of a longer gradient and LC 
column for the mid-throughput method, 
significantly more proteins were identified in 
comparison to the high-throughput method 
(mean and SD of 3370 ± 117 and 1483 ± 137, 
respectively). 

Figure 4. Cost comparison in $AUD between mid- 
and high-throughput proteomic analysis per sample 
(left y-axis) and per analyte per sample (right y-axis). 

Figure 3. %CV depicted as (A) violin plots of all samples analysed 
using mid- and high-throughput methods. The higher variability is most 
likely due to fewer points across a peak and high dynamic range of the 
sample.

Figure 5. Dynamic range of LFQ intensities of ranked 
proteins analysed using both high-throughput methods

Figure 6. Differentially expressed proteins between controls and disease above the 
threshold of 5% FDR and fold change ratio of 1.5 (blue dots) as expressed by (A) a volcano 
plot of results using high-throughput methods, (B) a volcano plot of results using mid-
throughput methods, (C) an upset plot of the overlap of proteins identified in each analysis, 
and (D) a volcano plot of the mid-throughput analysis with the overlapping proteins from 
both analyses highlighted in blue. 36 (high-throughput) and 455 (mid-throughput) 
differentially expressed proteins were discovered for each method. There were 31/36 of 
these identified proteins that overlapped.

Figure 7. Fourteen-marker prediction model for the high-throughput method (A) 
Receiver operating characteristic curve (ROC) analysis, using both k-nearest neighbours 
(knn) algorithm (C). Six-protein prediction model for the mid-throughput method (B) and 
ROC analysis using knn algorithm (D). Both methods performed well at discriminating 
NSCLC patient from controls, with AUC of 77.8%, and 94.4% for high and mid, respectively.

Specificity (%)

lysis buffer, reduced, alkylated and digested with trypsin. Two MS methods used: mid-
throughput 18 SPD (QEHFX, Thermo) and high-throughput 60 SPD (7600 Zeno-TOF, SCIEX).
Data were analysed using a combination of DIA-NN, Mass Dynamics and ProMor. 

(left y-axis) and mid-throughput methods (right y-axis) blood samples (n = 34). Data 
presented as mean ± SD. Overlap in detected proteins illustrated by Venn Diagrams. 
Washing of VAMS tips significantly improves dynamic range over conventional blood 
preparation methods as seen with mid-throughput method.
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