
Mass Dynamics

Mansi Aggarwal1, Sara Ceccacci
1  

, Kevin Roger2, Ida Chiara Guerrera2, Anna Quaglieri1
 2  

2,3

1. Ritchie, M. E. et al. (2015). limma powers differential expression 
analyses for RNA-sequencing and microarray studies. Nucleic Acids 
Research, 43(7), e47. https://doi.org/10.1093/nar/gkv007
2. SmythLab. (2025). SmythLab/limpa. GitHub. 
https: //github.com/SmythLab/limpa
3. Zhu, Y. et al. (2020). DEQMS: a method for accurate variance 
estimation in differential protein expression analysis. Molecular & 
Cellular Proteomics, 19(6), 1047–1057. 
https: //doi.org/10.1074/mcp.tir119.001646

The authors Mansi Aggarwal and Anna
Quaglieri are employees of Mass
Dynamics, a for-profit enterprise
delivering software as a service for the
processing, analysis, and sharing of
proteomics data. The authors Sara
Ceccacci, Kevin Roger, Ida Chiara
Guerrera are affiliated with INSERM,
which is a client of Mass Dynamics.

MassDynamics, Melbourne,Victoria3000,Australia, Necker Proteomics,Université Paris Cité - Structure Fédérative de 
Recherche Necker, INSERM US24/CNRS UAR3633, Paris 75015, France, 3Université Paris Cité, INSERM, UMR 1163, Institut
Imagine, Laboratory of Genetic Skin Diseases, F-75015 Paris, France

Introduction 
Differential abundance (DA) analysis is a fundamental tool in clinical research, especially useful for
understanding disease mechanisms and identifying biomarkers. However, the complexity of these
analyses often requires specialized statistical and computational expertise, making it difficult for teams
without these technical skills to fully leverage the power of DA. MD 3.0 addresses this challenge by
providing a flexible, intuitive platform that enables users to perform complex analyses in an interactive
web-based, cloud-powered interface, without the need for coding expertise. With MD 3.0, researchers can
now focus on collaborative exploration and interpretation of biological data, rather than navigating
software and programming languages. This study demonstrates how MD 3.0 empowers researchers to
interactively define experimental designs, integrate control variables, and tweak model parameters,
making the full potential of DA analysis accessible to users, regardless of their computational expertise.
We applied this workflow to a clinically relevant dataset from the Necker Proteomics Platform.

Flexible DA workflow with MD 3.0 
Dataset Service
The MD 3.0 Dataset Service streamlines the
orchestration and scaling of scientific workflows,
providing users with an intuitive interface for easy
access. The Pairwise Dataset is now a part of the
Dataset Service, enabling users to:

Data exploration using interactive modules

Custom design setups for differential abundance analyses
The Pairwise Comparison dataset simplifies the process of performing DA analysis by allowing easy incorporation of control variables into the experimental design matrix. This enables the
comparison of different models interactively, providing insights into proteins with varying expression patterns between the lesional and nonlesional skin regions. 

In this study, we compared three distinct models: 1) without any adjustments, 2) using a paired design to account for patient variability, 3) incorporating patient ID with the additional

covariates, 
age and sex. All other parameters are set to default for all three models. The results of the three datasets can then be accessed by interactive modules in the app.

Future Directions

Results
The results of the three datasets were easily compared within MD 3.0’s interactive visualization ecosystem. Pairwise volcano plots (Fig
4A-C) detected broad changes in protein significance, while upset plots (Fig 4D) revealed the overlap and unique differentially expressed
proteins across models. Dimensionality reduction (Fig 1 vs Fig 2C) confirmed that specifying the paired design with Patient ID increased
separation between healthy and diseased samples, leading to more differentially regulated proteins. Adjusting for age and sex further
improved analysis power, identifying even more significant proteins (Fig 4C). Reactome over-representation analysis of common
upregulated proteins across the three models revealed enriched biological pathways. This entire analysis was efficiently performed
interactively in MD 3.0 in under an hour.
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●Scale DA proteomic workflows using the limma1 
framework;
Easily and interactively define contrasts;●

●Adjust for covariates;
●Customise various limma parameters;

In the following sections, we demonstrate how the MD 3.0 
Dataset Service enhances accessibility and reproducibility, 
showcasing how users can seamlessly execute end-to-end 
DA workflows and leverage interactive visualization 
modules within the app.

Figure 1. Principal Component Analysis (PCA) using the MD 3.0 Dimensionality Reduction module.  
PCA with initial dataset, prior to adjusting for patient ID using the limma1 removeBatchEffect() function. The
separation between "Lésée" (diseased) and "Saine" (healthy) groups is less distinct than when we remove patient-
related variability in the next PCA (Fig 2A). 

After uploading the dataset into the app, we used the interactive dimensionality reduction module to explore the
variations in the data associated with patient-specific metadata, such as patient ID, age and sex. The platform’s
interface allowed us to easily visualize these variations and gain insights into the patterns present in the data.

For this study, we used a clinically relevant dataset from the Necker Proteomics Platform, focusing on a skin
disease. The dataset includes samples from 24 patients, each providing a lesional and a non-lesional skin sample.
The study demonstrates how MD 3.0 enables the easy fitting and comparison of multiple models, with and without
adjustment for confounding variables, to identify key proteins and pathways distinguishing lesional from non-
lesional skin samples.

Figure 2. Principal Component Analysis (PCA) using the MD 3.0
Dimensionality Reduction module and colouring by different metadata.  
A-B. PCA on unadjusted data colouring using covariates age and sex. These two
demographics information appear to have minimal impact on sample variability..
C. PCA after adjusting for patient ID. The separation between the two groups
becomes clearer, indicating that patient ID influences the separation between
conditions. 

Figure 3. Step-by-step
setup of the three
differential abundance
datasets via the
interactive user interface
in MD 3.0. A. The Pairwise
Comparison form allows
users to setup and trigger
the creation of differential
abundance analysis. Users
can choose the condition
columns, specify
comparisons of choice,
incorporate several control
variables, adjust limma
parameters, and apply
different types of missing
value filters. B. Setup for
the first model — no
adjustments. C. Setup for
the second model — paired
design with patient ID. D.
Setup for the third model —
patient ID along with
additional covariates i.e.,
age and sex.

MD 3.0simplifies differential abundance analysis, making it accessible to all researchers through
an intuitive interface and interactive visualizations. It enables easy model comparison and supports
biological discovery by automating dataset generation and ensuring reproducibility. 

Next, we plan to incorporate advanced differential expression techniques like limpa2 and DEqMS3, 
and other cutting-edge methods for improved model comparison. With the upcoming support for 
peptide data in our app, these techniques will leverage peptide-level uncertainty improving protein 
quantification and biological inferences without inflating false discoveries.

 Pairwise volcano plots for the three models comparing "Lésée" 
(diseased) vs "Saine" (healthy) groups.

 The upset plot allows interactive selection of commonly upregulated 
proteins across all models. 

After saving the selection, Reactome over-representation analysis 
(ORA) module was used to identify enriched biological pathway in
commonly upregulated proteins.
Proteins with adjusted p-value < 0.05 and fold change threshold > |2|
were classified as significant.
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Figure 4. Interactive differential expression analysis and pathway
enrichment.
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highlighted in the corresponding volcanoplots for eachmodel.
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Keen to try Mass Dynamics
using your own data?
Simply scan the QR code to
book a custom demo. 

BRIDGING COMPUTATIONAL COMPLEXITY AND BIOLOGICAL DISCOVERY:
INTERACTIVE DIFFERENTIAL ABUNDANCE ANALYSIS IN MD 3.0
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